МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Мурманский арктический государственный университет» (ФГБОУ ВО «МАГУ»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.12 Основы физики

(название дисциплины (модуля) в соответствии с учебным планом)

основной профессиональной образовательной программы по направлению подготовки

01.03.02 Прикладная математика и информатика

(код и наименование направления подготовки)

Системное программирование и компьютерные науки

(наименование направленности (профиля / профилей) / магистерской программы))

высшее образование – бакалавриат

уровень профессионального образования: высшее образование — бакалавриат / высшее образование — специалитет, магистратура / высшее образование — подготовка кадров высшей квалификации

бакалавр

квалификация

очная

форма обучения

2023

год набора

Составитель(и):

Парфенов Сергей Анатольевич, ассистент кафедры математики, физики и информационных технологий Утверждено на заседании кафедры математики, физики и информационных технологий факультета математических и естественных наук (протокол № 07 от 02.03.2023)

Зав. кафедрой _____ Ляш О.И.

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Сформировать у обучающихся естественнонаучное мировоззрение на основе системного подхода. В процессе изучения дисциплины обучающийся приобретает необходимую квалификацию для понимания способов формирования математических моделей, принятых в современной физике и активного овладения её понятийным аппаратом.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

В результате освоения дисциплины (модуля) формируются следующие компетенции: Перечень планируемых результатов обучения по дисциплине (модулю), соотнесённых с инликаторами лостижения компетенций

Компетенция	Индикаторы	Результаты обучения					
	компетенций						
ОПК-1: Способен	ОПК-1.1	Знать:					
применять	Использует	- Фундаментальные физические понятия,					
фундаментальные	аппарат	физические величины и единицы их измерения;					
знания, полученные в	фундаментальной	 Основные методы исследования и анализа, 					
области	математики	применяемые в современной физике и технике;					
математических и	для решения задач	 Базовые теории классической современной 					
(или) естественных	в области	физики;					
наук, и использовать их	профессиональны	 Основные законы и принципы, управляющие 					
В	х интересов	природными явлениями и процессами, на основе					
профессиональной	ОПК-1.2	которых работают современные приборы					
деятельности	Использует	Уметь:					
	фундаментальные	 Работать с простейшими аппаратами, приборам 					
	математические	и схемами, которые используются в физических					
	знания	и технологических лабораториях, и понимать					
	для решения	принципы их действия;					
	прикладных задач	 Ориентироваться в современной и вновь 					
	В	создаваемой технике Владеть:					
	профессиональной						
	сфере	— Приёмами и методами решения конкретных					
		задач из различных областей физики;					
		— Методами простейшей оценки и расчётами для					
		анализа физических явлений					

3. УКАЗАНИЕ МЕСТА ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина (модуль) «Основы физики» относится к обязательной части образовательной программы по направлению подготовки 01.03.02 Прикладная математика и информатика направленность (профиль) Системное программирование и компьютерные технологии.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоёмкость дисциплины (модуля) составляет 5 зачётных единиц или 180 часов (из расчёта 1 3E = 36 часов).

Курс	Семестр	Трудоёмкость в ЗЕ	Общая трудоёмкость (час)		онтактн работа ПР		Всего контактных часов	Из них интерактивной форме	Общее количество часов на СРС САЗ В В В В В В В В В В В В В В В В В В В		Кол-во часов на контроль	Форма контроля
2	3	5	180	28	28	_	<u>м</u> 56	10	97	¥.	27	Экзамен
	ого	5	180	28	28	_	56	10	97	-	27	Экзамен

Интерактивная форма реализуется в виде кейс-заданий по тематикам дисциплины, мастер-классов, мозгового штурма, групповой работы, метода эвристических вопросов, дебатов.

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

		Конта	актная р	абота	ЫХ	,¤		
№ п/п	Наименование раздела, темы	ЛК	ПР	ЛБ	Всего контактных часов	Из них в интерактивной форме	Кол-во часов на СРС	Кол-во часов на контроль
1.	Механика	6	6	-	12	2	16	-
2.	Молекулярная физика и термодинамика	6	6	-	12	2	16	-
3.	Электричество и магнетизм	6	6	-	12	2	20	-
4.	Колебания и волны	4	4	-	8	2	16	-
5.	Оптика	4	4	-	8	2	16	-
6.	Физика атома	2	2	-	4	-	13	-
	Экзамен	-	-	-	-	-	-	27
	Итого:	28	28	-	56	10	97	27

Содержание дисциплины (модуля)

Тема № 1. Механика.

Кинематика, динамика материальной точки и поступательного движения, работа и мощность, энергия, импульс, момент импульса, неинерциальные системы отсчёта, механика абсолютно твёрдого тела, механика упругих тел, закон Всемирного тяготения, колебательное движение.

Тема № 2. Молекулярная физика и термодинамика.

Основы молекулярно-кинетической теории, первое начало термодинамики, идеальный газ, кинетическая теория газов, функции распределения вероятностей состояний, энтропия, второе и третье начала термодинамики.

Тема № 3. Электричество и магнетизм.

Электрическое поле в вакууме и диэлектриках, проводники в электрическом поле, энергия электрического поля, электрический ток, магнитное поле в вакууме и веществе, электромагнитная индукция, движение заряженных частиц в электрическом и магнитном полях, ток в жидкостях и газах, электрические колебания.

Тема № 4. Колебания и волны.

Механические волны, акустика, электромагнитные волны.

Тема № 5. Оптика.

Геометрическая оптика, фотометрия, интерференция, дифракция и поляризация света, дисперсия.

Тема № 6. Физика атома.

Тепловое излучение, фотоны, фотоэффект, давление света, эффект Комптона, модель атома Резерфорда-Бора, спектры атомов и молекул, волны де Бройля, строение атомного ядра, закон радиоактивного распада, ядерные реакции, физика элементарных частиц.

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ, НЕОБХОДИМОГО ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Основная литература:

- 1. Айзенцон, А.Е. Физика: учебник и практикум для вузов / А.Е. Айзенцон.— Москва: Издательство Юрайт, 2022.— 335 с.— Текст : электронный // Образовательная платформа Юрайт [сайт].— URL: https://urait.ru/bcode/489456 (дата обращения: 25.03.2022).
- **2.** Кравченко, Н.Ю. Физика: учебник и практикум для вузов / Н.Ю. Кравченко.— Москва: Издательство Юрайт, 2022.— 300 с.— Текст : электронный // Образовательная платформа Юрайт [сайт].— URL: https://urait.ru/bcode/488428 (дата обращения: 25.03.2022).
- **3.** Родионов, В.Н. Физика: учебное пособие для вузов / В.Н. Родионов.— 2-е изд., испр. и доп.— Москва: Издательство Юрайт, 2022.— 265 с.— Текст : электронный // Образовательная платформа Юрайт [сайт].— URL: https://urait.ru/bcode/491489 (дата обращения: 25.03.2022).

Дополнительная литература:

- **4.** Кистович, А.В. Физика моря: учебное пособие для вузов / А.В. Кистович, К.В. Показеев, Т.О. Чаплина.— Москва: Издательство Юрайт, 2022.— 336 с.— Текст : электронный // Образовательная платформа Юрайт [сайт].— URL: https://urait.ru/bcode/496033 (дата обращения: 25.03.2022).
- **5.** Горлач, В.В. Физика. Задачи, тесты. Методы решения: учебное пособие для вузов / В.В. Горлач.— 2-е изд.— Москва: Издательство Юрайт, 2022.— 343 с.— Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/494407 (дата обращения: 25.03.2022).

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ).

В образовательном процессе используются:

- учебные аудитории для проведения учебных занятий, оснащённые оборудованием и техническими средствами обучения: учебная мебель, оборудование для демонстрации презентаций;
- помещения для самостоятельной работы, оснащённые компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду МАГУ.

7.1 ПЕРЕЧЕНЬ ЛИЦЕНЗИОННОГО И СВОБОДНО РАСПРОСТРАНЯЕМОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ:

- 7.1.1. Лицензионное программное обеспечение отечественного производства:
- 7.1.2. Лицензионное программное обеспечение зарубежного производства:
- 7.1.3. Свободно распространяемое программное обеспечение отечественного производства:
- 7.1.4. Свободно распространяемое программное обеспечение зарубежного производства: Mozilla FireFox

7.2 ЭЛЕКТРОННО-БИБЛИОТЕЧНЫЕ СИСТЕМЫ:

— ЭБС «Электронная библиотечная система ЮРАЙТ» [Электронный ресурс]: электронная библиотечная система / ООО «Электронное издательство ЮРАЙТ». — Режим доступа: https://urait.ru /

7.3 СОВРЕМЕННЫЕ ПРОФЕССИОНАЛЬНЫЕ БАЗЫ ДАННЫХ:

- Информационно-аналитическая система SCIENCE INDEX
- Электронная база данных Scopus
- Базы данных компании CLARIVATE ANALYTICS

7.4. ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ:

- Справочно-правовая информационная система Консультант Плюс http://www.consultant.ru/

8. ИНЫЕ СВЕДЕНИЯ И МАТЕРИАЛЫ НА УСМОТРЕНИЕ ВЕДУЩЕЙ КАФЕДРЫ. Не предусмотрено.

9. ОБЕСПЕЧЕНИЕ ОБРАЗОВАНИЯ ДЛЯ ЛИЦ С ОВЗ.

Для обеспечения образования инвалидов и лиц с ограниченными возможностями здоровья реализация дисциплины может осуществляться в адаптированном виде, с учётом специфики освоения и дидактических требований, исходя из индивидуальных возможностей и по личному заявлению обучающегося.